Shape and function of the Bicoid morphogen gradient in dipteran species with different sized embryos.
نویسندگان
چکیده
The Bicoid morphogen evolved approximately 150 MYA from a Hox3 duplication and is only found in higher dipterans. A major difference between dipteran species, however, is the size of the embryo, which varies up to 5-fold. Although the expression of developmental factors scale with egg length, it remains unknown how this scaling is achieved. To test whether scaling is accounted for by the properties of Bicoid, we expressed eGFP fused to the coding region of bicoid from three dipteran species in transgenic Drosophila embryos using the Drosophila bicoid cis-regulatory and mRNA localization sequences. In such embryos, we find that Lucilia sericata and Calliphora vicina Bicoid produce gradients very similar to the endogenous Drosophila gradient and much shorter than what they would have produced in their own respective species. The common shape of the Drosophila, Lucilia and Calliphora Bicoid gradients appears to be a conserved feature of the Bicoid protein. Surprisingly, despite their similar distributions, we find that Bicoid from Lucilia and Calliphora do not rescue Drosophila bicoid mutants, suggesting that that Bicoid proteins have evolved species-specific functional amino acid differences. We also found that maternal expression and anteriorly localization of proteins other than Bcd does not necessarily give rise to a gradient; eGFP produced a uniform protein distribution. However, a shallow gradient was observed using eGFP-NLS, suggesting nuclear localization may be necessary but not sufficient for gradient formation.
منابع مشابه
The Bicoid gradient is shaped independently of nuclei.
Morphogen gradients provide embryos with positional information, yet how they form is not understood. Binding of the morphogen to receptors could affect the formation of the morphogen gradient, in particular if the number of morphogen binding sites changes with time. For morphogens that function as transcription factors, the final distribution can be heavily influenced by the number of nuclear ...
متن کاملA Precise Bicoid Gradient Is Nonessential during Cycles 11–13 for Precise Patterning in the Drosophila Blastoderm
BACKGROUND During development, embryos decode maternal morphogen inputs into highly precise zygotic gene expression. The discovery of the morphogen Bicoid and its profound effect on developmental programming in the Drosophila embryo has been a cornerstone in understanding the decoding of maternal inputs. Bicoid has been described as a classical morphogen that forms a concentration gradient alon...
متن کاملDetermining the scale of the Bicoid morphogen gradient.
Bicoid is a morphogen that sets up the anterior-posterior axis in early Drosophila embryos. Although the form of the Bicoid profile is consistent with a simple diffusion/degradation model, the observed length scale is much larger than should be expected based on the measured diffusion rate. Here, we study two possible mechanisms that could, in principle, affect this gradient and, hence, address...
متن کاملScaling of the Bicoid morphogen gradient by a volume-dependent production rate.
An important feature of development is the formation of patterns that are proportional to the overall size of the embryo. But how such proportionality, or scaling, is achieved mechanistically remains poorly understood. Furthermore, it is currently unclear whether organisms utilize similar or distinct mechanisms to achieve scaling within a species and between species. Here we investigate within-...
متن کاملBicoid by the Numbers: Quantifying a Morphogen Gradient
Morphogen gradients are typically analyzed from static images of fixed embryonic tissues. Two papers in this issue of Cell now report live imaging of the Bicoid gradient in developing fruit fly embryos (Gregor et al., 2007a, 2007b). Their findings indicate that the gradient is highly reproducible from embryo to embryo and reveal that the nuclear dynamics of Bicoid are critical for maintaining p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 316 2 شماره
صفحات -
تاریخ انتشار 2008